Measurement + Control (Apr 2018)
Flight Motion Controller Design using Genetic Algorithm for a Quadcopter
Abstract
In this study, the Genetic Algorithm operability is assigned to optimize the proportional–integral–derivative controller parameters for both simulation and real-time operation of quadcopter flight motion. The optimized proportional–integral–derivative gains, using Genetic Algorithm to minimum the fitness function via the integral of time multiplied by absolute error criterion, are then integrated to control the quadcopter flight motion. In addition, the proposed controller design is successfully implemented to the experimental real-time flight motion. The performance results are proven that the highly effective stability operation and the reliable of waypoint tracking.