E3S Web of Conferences (Jan 2020)

Thyristor Voltage Regulator Experimental Research

  • Sosnina Elena,
  • Sevostyanov Aleksandr,
  • Kryukov Evgeny,
  • Bedretdinov Rustam

DOI
https://doi.org/10.1051/e3sconf/202020907020
Journal volume & issue
Vol. 209
p. 07020

Abstract

Read online

The article is devoted to the thyristor voltage regulator (TVR) development. The TVR purpose is to control power flows and regulate voltage in 6-20 kV distribution electrical networks (DEN). The principle of TVR operation is based on the plus EMF (or minus EMF) introduction into power line when the shared use of longitudinal (change of magnitude) and transverse (change of phase) voltage regulation. The description of the TVR prototype is given. The TVR prototype consists of a 0.4 kV thyristor switches, power transformers (shunt and serial) and a 6 kV switchgear. The TVR has a two-level control system (CS). The TVR prototype experimental research was conducted in four stages: check of power equipment, first level CS research, second level CS research, prototype tests as a whole. The connection diagrams (thyristor switches unit, transformer and measuring equipment) and contact connections reliability were checked when the power part was tested. A qualitative characteristic of the input and output signals was obtained when testing the first level CS. It is found that the thyristor control pulses are formed according to the developed algorithm. The correctness of control system algorithms, executed and transmitted commands, passed and received data was confirmed as a result of the second level CS tests. The TVR research results indicate that the prototype provides the smoothness and specified accuracy of voltage regulation in all modes. The control range of the output voltage relative to the input was ±10%. The discreteness of regulation did not exceed 1.5%. The range of change in the shift angle of the output voltage relative to the input was ±5°. Research confirmed the TVR ES operability and its readiness for trial operation.