Geophysical Research Letters (Mar 2023)
Thermoelastic Properties of Liquid Fe‐Rich Alloys Under Martian Core Conditions
Abstract
Abstract Seismic measurements made on Mars indicate that the liquid iron‐nickel core is rich in light elements; however, the effects of these light components on the elasticity of Mars’ core remain poorly constrained. Here, we calculate elastic properties of various liquid Fe‐X (X = Ni, S, C, O and H) mixtures using ab initio molecular dynamics simulations. We find that, at martian core conditions, the addition of S and O most effectively decreases the density of liquid iron, followed by C and H, while Ni has a minimal effect. As for compressional sound velocity (Vp), C increases Vp of liquid Fe throughout Mars’ core, while both S and O reduce Vp, the intensity of which diminishes with increasing pressure. Assuming a martian core made of a binary mixture, the seismically‐inferred density would require the presence of at least 30 wt% S.