Science of Sintering (Jan 2007)

Influence of mechanical activation on synthesis and properties of the MgO-TiO2 system

  • Petrović Vera V.,
  • Maričić A.,
  • Labus N.,
  • Ristić M.M.

DOI
https://doi.org/10.2298/SOS0701059P
Journal volume & issue
Vol. 39, no. 1
pp. 59 – 65

Abstract

Read online

Materials applied in electronics such as multilayer capacitors are an important field of ceramic materials. Magnesium titanate based dielectric materials are used for producing type-I capacitors. A common way of obtaining this material is a solid-state reaction during reaction sintering. The process of sintering can be enhanced if mechanical activation precedes. In this work starting powders of magnesium carbonate (MgCO3) and titanium dioxide (TiO2) with a rutile crystal modification were weighed to attain a 1:1 molar MgCO3:TiO2 ratio. Mechanical activation of the starting mixture was performed by high energy ball milling using ZrO balls and vessels with a ball to powder mass ratio of 40:1. The observed grinding times were 15, 30, 60 and 120 minutes. Powder characterization was conducted using X ray powder diffraction, DTA analysis up to 1000 o C and particle morphology changes were observed with Scanning Electron Microscopy. Isothermal sintering of compacted powders was conducted at 1100ºC during 30, 60 and 180 minutes. For specimens synthesized in such a manner, microwave dielectric properties were measured, quality factor Q, specific electrical resistivity (ρ) and the dielectric constant (Єr). In this work we explain the influence of mechanical activation on the MgCO3-TiO2 system leading to titanate formation during sintering, as well as induced changes in microwave dielectric properties.

Keywords