Remote Sensing (Mar 2021)

A High-Dimensional Indexing Model for Multi-Source Remote Sensing Big Data

  • Lilu Zhu,
  • Xiaolu Su,
  • Xianqing Tai

DOI
https://doi.org/10.3390/rs13071314
Journal volume & issue
Vol. 13, no. 7
p. 1314

Abstract

Read online

With continuous improvement of earth observation technology, source, and volume of remote sensing data are gradually enriched. It is critical to realize unified organization and to form data sharing service capabilities for massive remote sensing data effectively. We design a hierarchical multi-dimensional hybrid indexing model (HMDH), to address the problems in underlying organization and management, and improve query efficiency. Firstly, we establish remote sensing data grid as the smallest unit carrying and processing spatio-temporal information. We implement the construction of the HMDH in two steps, data classification based on fuzzy clustering algorithm, and classification optimization based on recursive neighborhood search algorithm. Then, we construct a hierarchical “cube” structure, filled with continuous space filling curves, to complete the coding of the HMDH. The HMDH reduces the amount of data to 6–17% and improves the accuracy to more than eight times than traditional grid model. Moreover, it can reduce the query time to 25% in some query scenarios than algorithms selected as the baseline in this paper. The HMDH model proposed can be used to solve the efficiency problems of fast and joint retrieval of remote sensing data. It extends the pattens of data sharing service and has a high application value.

Keywords