East European Journal of Physics (Jun 2023)

Improvement structural and dielectric properties of PS/SiC/Sb2O3 nanostructures for nanoelectronics devices

  • Majeed Ali Habeeb,
  • Nawras Karim Al-Sharifi

DOI
https://doi.org/10.26565/2312-4334-2023-2-40
Journal volume & issue
no. 2

Abstract

Read online

In the current study, the PS/SiC/Sb2O3 nanocomposites have been prepared by using solution casting method with different concentrations of SiC/Sb2O3 nanoparticles (0,2,4,6,8) % wt. The structural and dielectric properties of (PS/SiC/Sb2O3) nanocomposites have been investigated. Full emission scanning electron microscope (FE-SEM) used to study the surface of nanocomposite. FE-SEM confirmed that good distribution of SiC and Sb2O3 NPs into the polymer matrix. Optical microscope (OM) was tested the morphological of nanocomposite that proven that the polystyrene is exceptionally miscible, as seen by its finer form and smooth, homogeneous surface, while the additive concentration SiC and Sb2O3 NPs are well distributed on the surface of the polymer nanocomposite films. Fourier transformation spectroscopy (FTIR) was examine the structural of nanocomposite and give the information of the vibration of molecules. From FTIR, the additive SiC and Sb2O3 NPs caused interaction with polymer matrix. FTIR proven that there is physical interactions between polystyrene and SiC and Sb2O3 NPs. According to AC electrical properties, dielectric constant and dielectric loss of the NCs reduce with increasing the frequency of the applied electric field and increased with increasing concentration of SiC/Sb2O3 nanoparticles, while AC electrical conductivity increased with increasing frequency and concentration of SiC/Sb2O3 NPs. The results of structural and electrical characteristics show that the PS/SiC/Sb2O3 nanocomposites may be used for various electronics devices.

Keywords