Cellular Physiology and Biochemistry (Feb 2015)

Nitro-Oleic Acid Attenuates OGD/R-Triggered Apoptosis in Renal Tubular Cells via Inhibition of Bax Mitochondrial Translocation in a PPAR-γ-Dependent Manner

  • Huibin Nie,
  • Xia Xue,
  • Jie Li,
  • Xiangchun Liu,
  • Shasha Lv,
  • Guangju Guan,
  • Haiying Liu,
  • Gang Liu,
  • Shanshan Liu,
  • Zhixin Chen

DOI
https://doi.org/10.1159/000373944
Journal volume & issue
Vol. 35, no. 3
pp. 1201 – 1218

Abstract

Read online

Background: Nitroalkene derivatives of oleic acid (OA-NO2) serve as high-affinity ligand for PPAR-γ, which regulates apoptosis, oxidation and inflammation and plays a central role in ischemia-reperfusion injury. In the present study, we elucidated the protective mechanisms of OA-NO2 against renal ischemia-reperfusion injury. Methods: HK-2 cells were subjected to oxygen and glucose deprivation followed by re-oxygenation (OGD/R) to mimic renal ischemia-reperfusion injury. Cell apoptosis was analyzed by flow cytometry. Bax mitochondrial translocation, cytochrome c and apoptosis-inducing factor (AIF) cytosolic leakage and Akt/Gsk 3β phosphorylation were evaluated by Western blotting. Bax activation was visualized by immunocytochemistry. GW9662 and siRNA transfection were employed to examine the involvement of PPAR-γ. Results: OGD/R injury promoted mitochondrial translocation and activation of Bax, leakage of cytochrome c and AIF, subsequent caspase-3 activation, and eventually cell apoptosis. Pre-incubation with OA-NO2 (1.25 µM, 45min) inhibited Bax activation and blocked apoptotic cascade, while the protective effects were negated by GW9662 or PPAR-γ siRNA. Moreover, OA-NO2 restored Akt and Gsk 3β phosphorylation in a PPAR-γ-dependent way. Conclusion: These findings suggest that OA-NO2 attenuates OGD/R-induced apoptosis by inhibiting Bax translocation and activation and the subsequent mitochondria-dependent apoptotic cascade in a PPAR-γ dependent manner.

Keywords