PLoS ONE (Jan 2023)
Serum metabolomic analysis of the dose-response effect of dietary choline in overweight male cats fed at maintenance energy requirements.
Abstract
Choline participates in methyl group metabolism and has been recognized for its roles in lipid metabolism, hepatic health and muscle function in various species. Data regarding the impacts of choline on feline metabolic pathways are scarce. The present study investigated how choline intake affects the metabolomic profile of overweight cats fed at maintenance energy. Overweight (n = 14; body condition score:6-8/9) male adult cats were supplemented with five doses of choline in a 5x5 Latin Square design. Cats received a daily dose of choline on extruded food (3620 mg choline/kg diet) for three weeks at maintenance energy requirements (130 kcal/kgBW0.4). Doses were based on body weight (BW) and the daily recommended allowance (RA) for choline for adult cats (63 mg/kg BW0.67). Treatment groups included: Control (no additional choline, 1.2 x NRC RA, 77 mg/kg BW0.67), 2 x NRC RA (126 mg/kg BW0.67), 4 x NRC RA (252 mg/kg BW0.67), 6 x RA (378 mg/kg BW0.67), and 8 x NRC RA (504 mg/kg BW0.67). Serum was collected after an overnight fast at the end of each treatment period and analyzed for metabolomic parameters through nuclear magnetic resonance (NMR) spectroscopy and direct infusion mass spectrometry (DI-MS). Data were analyzed using GLIMMIX, with group and period as random effects, and dose as the fixed effect. Choline up to 8 x NRC RA was well-tolerated. Choline at 6 and 8 x NRC RA resulted in greater concentrations of amino acids and one-carbon metabolites (P < 0.05) betaine, dimethylglycine and methionine. Choline at 6 x NRC RA also resulted in greater phosphatidylcholine and sphingomyelin concentrations (P < 0.05). Supplemental dietary choline may be beneficial for maintaining hepatic health in overweight cats, as it may increase hepatic fat mobilization and methyl donor status. Choline may also improve lean muscle mass in cats. More research is needed to quantify how choline impacts body composition.