Scientific Reports (Sep 2021)

Naphthyridine derived colorimetric and fluorescent turn off sensors for Ni2+ in aqueous media

  • Abida Ashraf,
  • Muhammad Islam,
  • Muhammad Khalid,
  • Anthony P. Davis,
  • Muhammad Tayyeb Ahsan,
  • Muhammad Yaqub,
  • Asad Syed,
  • Abdallah M. Elgorban,
  • Ali H. Bahkali,
  • Zahid Shafiq

DOI
https://doi.org/10.1038/s41598-021-98400-2
Journal volume & issue
Vol. 11, no. 1
pp. 1 – 13

Abstract

Read online

Abstract Highly selective and sensitive 2,7-naphthyridine based colorimetric and fluorescence “Turn Off” chemosensors (L1-L4) for detection of Ni2+ in aqueous media are reported. The receptors (L1-L4) showed a distinct color change from yellow to red by addition of Ni2+ with spectral changes in bands at 535–550 nm. The changes are reversible and pH independent. The detection limits for Ni2+ by (L1-L4) are in the range of 0.2–0.5 µM by UV–Visible data and 0.040–0.47 µM by fluorescence data, which is lower than the permissible value of Ni2+ (1.2 µM) in drinking water defined by EPA. The binding stoichiometries of L1-L4 for Ni2+ were found to be 2:1 through Job’s plot and ESI–MS analysis. Moreover the receptors can be used to quantify Ni2+ in real water samples. Formation of test strips by the dip-stick method increases the practical applicability of the Ni2+ test for “in-the-field” measurements. DFT calculations and AIM analyses supported the experimentally determined 2:1 stoichiometries of complexation. TD-DFT calculations were performed which showed slightly decreased FMO energy gaps due to ligand–metal charge transfer (LMCT).