Structural Dynamics (Jul 2018)

Time-resolved nuclear dynamics in bound and dissociating acetylene

  • C. Burger,
  • A. Atia-Tul-Noor,
  • T. Schnappinger,
  • H. Xu,
  • P. Rosenberger,
  • N. Haram,
  • S. Beaulieu,
  • F. Légaré,
  • A. S. Alnaser,
  • R. Moshammer,
  • R. T. Sang,
  • B. Bergues,
  • M. S. Schuurman,
  • R. de Vivie-Riedle,
  • I. V. Litvinyuk,
  • M. F. Kling

DOI
https://doi.org/10.1063/1.5037686
Journal volume & issue
Vol. 5, no. 4
pp. 044302 – 044302-13

Abstract

Read online

We have investigated nuclear dynamics in bound and dissociating acetylene molecular ions in a time-resolved reaction microscopy experiment with a pair of few-cycle pulses. Vibrating bound acetylene cations or dissociating dications are produced by the first pulse. The second pulse probes the nuclear dynamics by ionization to higher charge states and Coulomb explosion of the molecule. For the bound cations, we observed vibrations in acetylene (HCCH) and its isomer vinylidene (CCHH) along the CC-bond with a periodicity of around 26 fs. For dissociating dication molecules, a clear indication of enhanced ionization is found to occur along the CH- and CC-bonds after 10 fs to 40 fs. The time-dependent ionization processes are simulated using semi-classical on-the-fly dynamics revealing the underling mechanisms.