Water Supply (Feb 2021)

An ecological stability-oriented model for the conjunctive allocation of surface water and groundwater in oases in arid inland river basins

  • Zixu Qiao,
  • Long Ma,
  • Tingxi Liu,
  • Xing Huang

DOI
https://doi.org/10.2166/ws.2020.305
Journal volume & issue
Vol. 21, no. 1
pp. 368 – 385

Abstract

Read online

With the continuous development of the population and social economy, the spatial and temporal distribution of water resources in arid inland river basins is severely uneven, and there is a sharp contradiction between agricultural water use and ecological water use. Irrational development and utilization of water resources has led to many problems, such as shrinking oases and drying lakes. To solve this problem, this study proposes a multiobjective, multiwater-source, ecological stability-oriented double-layer model for optimal allocation of water resources based on the large-scale system decomposition–coordination principle, the water balance principle, and a water supply and demand forecasting model. This model can resolve the contradiction between agricultural water use and ecological water use by optimizing and adjusting the crop planting structure, industrial structure, and the amount of water allocated to and groundwater level in each region and thereby achieve ecological stability and restoration of oases. The developed model was applied to the Heihe River Basin in an inland region of Northwest China. The long-term time series data of 2000–2016 were used to construct and calibrate the model. Finally, the practical ecological stability-oriented plan for conjunctive allocation of surface water and groundwater in different plan years was proposed. This model enriches the research results related to the conjunctive allocation of surface water and groundwater and provides a reference for the ecological restoration of oases in arid inland river basins.

Keywords