Aerospace (Sep 2024)
Experimental Investigation of Rotor Noise in Reverse Non-Axial Inflow
Abstract
This paper experimentally characterises the far-field noise emissions of a rotor operating in reverse non-axial inflow conditions. Specifically, experiments were undertaken at a range of rotor tilting angles and inflow velocities to investigate the effects of negative tilting on rotor acoustics and their correlation with aerodynamic performance. The results show that the forces and moments experienced by the rotor blades change significantly with increasing inflow velocity and increasing negative tilting angle. Correspondingly, distinct modifications to the far-field acoustic spectra are observed for the negatively tilted rotor when compared to the edgewise condition, with the broadband noise content notably increasing. Moreover, for a given tilting angle, the broadband noise component is accentuated with increasing inflow velocity, similar to when the negative tilting angle is increased. With reference to the flow-field surveys conducted in the literature and a preliminary in-house flow measurement, the increase in broadband content can possibly be attributed to the heightened level of ingestion of blade self-turbulence, i.e., the ingestion of turbulent wake generated by the upstream portion of the rotor by the downstream portion. At lower inflow velocities, the magnitude of the blade passing frequency at each of the observer angles is found to change minimally with negative tilt. In contrast, at higher inflow velocities, the directivity pattern and intensity of both the blade passing frequency and the overall sound pressure level are shown to change with increases in magnitude, particularly at downstream observer locations with negative tilt. These findings have important ramifications for the design and suitable operational profile of aerial vehicles for future urban air mobility applications.
Keywords