Communications in Advanced Mathematical Sciences (Mar 2021)

On the Recursive Sequence $x_{n+1}= \frac{x_{n-29}}{1+x_{n-4}x_{n-9}x_{n-14}x_{n-19}x_{n-24}}$

  • Burak Oğul,
  • Dağistan Şimşek

DOI
https://doi.org/10.33434/cams.814296
Journal volume & issue
Vol. 4, no. 1
pp. 46 – 54

Abstract

Read online

In this paper, we are going to analyze the following difference equation $$x_{n+1}=\frac{x_{n-29}}{1+x_{n-4}x_{n-9}x_{n-14}x_{n-19}x_{n-24}} \quad n=0,1,2,...$$ where $x_{-29}, x_{-28}, x_{-27}, ..., x_{-2}, x_{-1}, x_{0} \in \left(0,\infty\right)$.

Keywords