Molecules (Jun 2023)

Improvement of Luminescence Properties of Eulytite Single-Phase White Emitting Ca<sub>3</sub>Bi (PO<sub>4</sub>)<sub>3</sub>: Ce<sup>3+</sup>/Dy<sup>3+</sup> Phosphor

  • Mengjiao Xu,
  • Jiamin Liang,
  • Luxiang Wang,
  • Nannan Guo,
  • Lili Ai

DOI
https://doi.org/10.3390/molecules28134967
Journal volume & issue
Vol. 28, no. 13
p. 4967

Abstract

Read online

To reduce the issue of tri-primary color reabsorption, a new approach for single-phase phosphors as light-emitting diodes (LEDs) has been recommended. The structures, morphology, photoluminescence, thermal stability, and luminescence mechanism of a variety of Ca3Bi (PO4)3 (CBPO): Ce3+/Dy3+ phosphors were investigated. XRD characterization showed that all CBPO samples were eulytite structures. Furthermore, the energy transfer process from Ce3+ to Dy3+ in CBPO is systematically investigated in this work, and the color of light can be adjusted by changing the ratio of doped ions. Under UV light, energy is transferred from Ce3+-Dy3+ mainly through quadrupole-quadrupole interactions in the CBPO host, and doping with different Dy3+ concentrations tunes the emission color from blue to white. The thermal stability of the CBPO: 0.04Ce3+, 0.08Dy3+ samples is outstanding, and the CIE coordinates of the samples after emission have little effect with temperature, while their emission intensity at 423 K is as strong as that at room temperature, reaching 90%. The above results indicate that this CBPO material has great potential as a white light phosphor under near-UV excitation at the optimized concentration of Ce3+ and Dy3+.

Keywords