Batteries (Aug 2023)

Facile Constructing Hierarchical Fe<sub>3</sub>O<sub>4</sub>@C Nanocomposites as Anode for Superior Lithium-Ion Storage

  • Haichang Zhong,
  • Wenlong Huang,
  • Yukun Wei,
  • Xin Yang,
  • Chunhai Jiang,
  • Hui Liu,
  • Wenxian Zhang,
  • Chu Liang,
  • Leyang Dai,
  • Xijun Xu

DOI
https://doi.org/10.3390/batteries9080403
Journal volume & issue
Vol. 9, no. 8
p. 403

Abstract

Read online

Ferroferric oxide (Fe3O4) is regarded to be a promising high-capacity anode material for LIBs. However, the capacity attenuates fast and the rate performance is poor due to the dramatic pulverization and sluggish charge transfer properties. To solve these problems, a simple in situ encapsulation and composite method was successfully developed to construct carbon nanotube/nanorod/nanosheet-supported Fe3O4 nanoparticles. Owing to the hierarchical architecture design, the novel structure Fe3O4@C nanocomposites effectively enhance the charge transfer, alleviate pulverization, avoid the agglomeration of Fe3O4 nanoparticles, and also provide superior kinetics toward lithium storage, thereby showing significantly improved reversibility and rate performance. The carbon nanotube/nanorod supported core-shell structure Fe3O4@C nanocomposite displays outstanding high rate capability and stable cycling performance (reversible capability of 1006, 552 and 423 mA h g−1 at 0.2, 0.5 and 1 A g−1 after running 100, 300 and 500 cycles, respectively).

Keywords