Communications Biology (Jun 2023)
Iron limitation of kelp growth may prevent ocean afforestation
Abstract
Abstract Carbon dioxide removal (CDR) and emissions reduction are essential to alleviate climate change. Ocean macroalgal afforestation (OMA) is a CDR method already undergoing field trials where nearshore kelps, on rafts, are purposefully grown offshore at scale. Dissolved iron (dFe) supply often limits oceanic phytoplankton growth, however this potentially rate-limiting factor is being overlooked in OMA discussions. Here, we determine the limiting dFe concentrations for growth and key physiological functions of a representative kelp species, Macrocystis pyrifera, considered as a promising candidate for OMA. dFe additions to oceanic seawater ranging 0.01-20.2 nM Fe′ ‒ Fe′ being the sum of dissolved inorganic Fe(III) species ‒ result in impaired physiological functions and kelp mortality. Kelp growth cannot be sustained at oceanic dFe concentrations, which are 1000-fold lower than required by M. pyrifera. OMA may require additional perturbation of offshore waters via dFe fertilisation.