Scientific Reports (May 2021)

Non-oxide precipitates in additively manufactured austenitic stainless steel

  • Manas Vijay Upadhyay,
  • Meriem Ben Haj Slama,
  • Steve Gaudez,
  • Nikhil Mohanan,
  • Lluis Yedra,
  • Simon Hallais,
  • Eva Héripré,
  • Alexandre Tanguy

DOI
https://doi.org/10.1038/s41598-021-89873-2
Journal volume & issue
Vol. 11, no. 1
pp. 1 – 18

Abstract

Read online

Abstract Precipitates in an austenitic stainless steel fabricated via any Additive Manufacturing (AM), or 3D printing, technique have been widely reported to be only Mn-Si-rich oxides. However, via Transmission Electron Microscopy (TEM) studies on a 316L stainless steel, we show that non-oxide precipitates (intermetallics, sulfides, phosphides and carbides) can also form when the steel is fabricated via Laser Metal Deposition (LMD)—a directed energy deposition-type AM technique. An investigation into their origin is conducted with support from precipitation kinetics and finite element heat transfer simulations. It reveals that non-oxide precipitates form during solidification/cooling at temperatures ≥ 0.75Tm (melting point) and temperature rates ≤ 105 K/s, which is the upper end of the maximum rates encountered during LMD but lower than those encountered during Selective Laser Melting (SLM)—a powder-bed type AM technique. Consequently, non-oxide precipitates should form during LMD, as reported in this work, but not during SLM, in consistency with existing literature.