Scientific Reports (Dec 2023)
Leveraging machine learning to distinguish between bacterial and viral induced pharyngitis using hematological markers: a retrospective cohort study
Abstract
Abstract Accurate differentiation between bacterial and viral-induced pharyngitis is recognized as essential for personalized treatment and judicious antibiotic use. From a cohort of 693 patients with pharyngitis, data from 197 individuals clearly diagnosed with bacterial or viral infections were meticulously analyzed in this study. By integrating detailed hematological insights with several machine learning algorithms, including Random Forest, Neural Networks, Decision Trees, Support Vector Machine, Naive Bayes, and Lasso Regression, for potential biomarkers were identified, with an emphasis being placed on the diagnostic significance of the Monocyte-to-Lymphocyte Ratio. Distinct inflammatory signatures associated with bacterial infections were spotlighted in this study. An innovation introduced in this research was the adaptation of the high-accuracy Lasso Regression model for the TI-84 calculator, with an AUC (95% CI) of 0.94 (0.925–0.955) being achieved. Using this adaptation, pivotal laboratory parameters can be input on-the-spot and infection probabilities can be computed subsequently. This methodology embodies an improvement in diagnostics, facilitating more effective distinction between bacterial and viral infections while fostering judicious antibiotic use.