پدافند الکترونیکی و سایبری (Aug 2024)

مدل تشخیص نفوذ در خانه های هوشمند مبتنی بر تحلیل مؤلفه اصلی و دسته بندی جنگل تصادفی

  • علی اکبر تجری سیاه مرزکوه

Journal volume & issue
Vol. 12, no. 2

Abstract

Read online

در سال های اخیر، مساله حفظ امنیت خانه های هوشمند که در آن، تعداد زیادی از وسایل برای برقراری ارتباط از اتصالات اینترنت استفاده می کنند به یکی از دغدغه های اصلی در حوزه امنیت شبکه تبدیل شده است. اگرچه تاکنون پژوهش های زیادی در جهت برقراری امنیت خانه های هوشمند انجام شده است، اما با توجه به گستردگی موضوع مورد بحث، اغلب این کارها در مواردی از جمله دقت و سرعت عمل، کارآیی لازم را ندارند. در روش پیشنهادی پس از انجام برخی عملیات پیش پردازش روی مجموعه داده، به کمک تحلیل مؤلفه اصلی (PCA)، زیرمجموعه ای از ویژگی های مجموعه داده که به عنوان مؤثرترین ویژگی ها در تشخیص نفوذ به شمار می آیند برای آماده سازی داده ها جهت دسته بندی انتخاب شده اند که این عمل منجر به افزایش دقت و سرعت عمل دسته بندی می شود. همچنین در مرحله دسته بندی از الگوریتم جنگل تصادفی که یک الگوریتم قدرتمند مبتنی بر یادگیری ماشین است بر روی یک مجموعه داده بسیار جدید اینترنت اشیا، به نام IoTID20 استفاده شده است. رویکرد پیشنهادی عملکرد بالایی برای تشخیص نفوذ با دقت %99.73 و %98.46 برای دسته بندی حملات دودویی و چند کلاسه نشان داده است. مقایسه نتایج روش پیشنهادی با سایر کارهای انجام شده، نشان دهنده برتری روش پیشنهادی در تشخیص حملات چند کلاسه است.

Keywords