Heliyon (Jul 2023)

Microwave-assisted hydrothermal fabrication of hierarchical-stacked mesoporous decavanadate-intercalated ZnAl nanolayered double hydroxide to exterminate different developmental stages of Trichinella spiralis and Schistosoma mansoni in-vitro

  • Atef S. Darwish,
  • Soheir S. Mahmoud,
  • Fatma E.A. Bayaumy

Journal volume & issue
Vol. 9, no. 7
p. e18110

Abstract

Read online

Hierarchically stacked mesoporous zinc-aluminium nanolayered-double-hydroxide intercalated with decavanadate (ZnAl-LDH-V10O28) is constructed using anion-exchange process via microwave-hydrothermal treatment. Physicochemical properties of ZnAl-LDH-V10O28 are characterized in detail. Decavanadate anions are intimately interacted with ZnAl-LDH nanosheets, generating highly ordered architecture of well-dimensioned stacking blocks of brucite-like nanolayers (∼8 nm). Such hierarchy improves surface-porosity and electrical-impedivity of ZnAl-LDH-V10O28 with declining its zeta-potential (ζav = 8.8 mV). In-vitro treatment of various developmental-stages of Trichinella spiralis and Schistosoma mansoni by ZnAl-LDH-V10O28 is recognized using parasitological and morphological (SEM/TEM) analyses. ZnAl-LDH-V10O28 exterminates muscle-larvae and adult-worms of Trichinella spiralis, and juvenile and adult Schistosoma mansoni, yielding near 100% mortality with rates achieving 5%/h within about 17 h of incubation. This parasiticidal behavior results from the symphony of biological activity gathering decavanadate and LDH-nanosheets. Indeed, ZnAl-LDH-V10O28 nanohybrid sample, as a promissory biocide for killing food-borne/waterborne parasites, becomes a futuristic research hotspot for studying its in-vivo bioactivity and impact-effectiveness on parasite molecular biology.

Keywords