Nanomaterials (Feb 2022)

SBA-15 Mesoporous Silica as Delivery Vehicle for rhBMP-2 Bone Morphogenic Protein for Dental Applications

  • Dimitrios Gkiliopoulos,
  • Ioannis Tsamesidis,
  • Anna Theocharidou,
  • Georgia K. Pouroutzidou,
  • Evi Christodoulou,
  • Evangelia Stalika,
  • Konstantinos Xanthopoulos,
  • Dimitrios Bikiaris,
  • Konstantinos Triantafyllidis,
  • Eleana Kontonasaki

DOI
https://doi.org/10.3390/nano12050822
Journal volume & issue
Vol. 12, no. 5
p. 822

Abstract

Read online

(1) Background: A proposed approach to promote periodontal tissue regeneration in cases of peri-implantitis is the local administration of growth factors at the implant site. Recombinant human bone morphogenetic protein-2 (rh-BMP-2) can effectively promote bone regeneration and osseointegration and the development of appropriate carriers for its delivery is of paramount importance. The aim of the present study was to develop SBA-15 mesoporous nanoparticles (MSNs) with varying porosity, evaluate their biocompatibility with human Periodontal Ligament Cells (hPDLCs) and to investigate their effectiveness as carriers of rh-BMP-2. (2) Methods: SBA-15 type mesoporous silicas were synthesized via sol–gel reaction. The calcined SBA-15 samples were characterized by N2 porosimetry, Fourier transform–infrared spectrometry (FTIR), Scanning (SEM) and Transmission Electron Microscopy (TEM). Rh-BMP-2 loading and release kinetics were evaluated by UV spectroscopy. (3) Results: MSNs presented hexagonally arranged, tubular pores of varying length and diameter. Slightly higher loading capacity was achieved for SBA-15 with large pores that presented good hemocompatibility. MTT assay revealed no cytotoxic effects for all the tested materials, while SBA-15 with large pores induced a significant upregulation of cell viability at day 5. (4) Conclusions: SBA-15 MSNs may prove a valuable delivery platform towards the effective release of bone-inducing proteins.

Keywords