Current Issues in Molecular Biology (Sep 2021)

Synthetic Oligopeptides Mimicking γ-Core Regions of Cysteine-Rich Peptides of <i>Solanum lycopersicum</i> Possess Antimicrobial Activity against Human and Plant Pathogens

  • Marina P. Slezina,
  • Ekaterina A. Istomina,
  • Ekaterina V. Kulakovskaya,
  • Tatiana N. Abashina,
  • Tatyana I. Odintsova

DOI
https://doi.org/10.3390/cimb43030087
Journal volume & issue
Vol. 43, no. 3
pp. 1226 – 1242

Abstract

Read online

Plant cysteine-rich peptides (CRPs) represent a diverse group of molecules involved in different aspects of plant physiology. Antimicrobial peptides, which directly suppress the growth of pathogens, are regarded as promising templates for the development of next-generation pharmaceuticals and ecologically friendly plant disease control agents. Their oligopeptide fragments are even more promising because of their low production costs. The goal of this work was to explore the antimicrobial activity of nine short peptides derived from the γ-core-containing regions of tomato CRPs against important plant and human pathogens. We discovered antimicrobial activity in peptides derived from the defensin-like peptides, snakins, and MEG, which demonstrates the direct involvement of these CRPs in defense reactions in tomato. The CRP-derived short peptides appeared particularly active against the gram-positive bacterium Clavibacter michiganensis, which causes bacterial wilt—opening up new possibilities for their use in agriculture to control this dangerous disease. Furthermore, high inhibitory potency of short oligopeptides was demonstrated against the yeast Cryptococcus neoformans, which causes serious diseases in humans, making these peptide molecules promising candidates for the development of next-generation pharmaceuticals. Studies of the mode of action of the two most active peptides indicate fungal membrane permeabilization as a mechanism of antimicrobial action.

Keywords