Bulletin of the Chemical Society of Ethiopia (Dec 2008)

<b>Potentiometric titration curves of aluminium salt solutions and its species conversion in the hydrolysis-polymerization course</b>

  • Chenyi Wang,
  • Zhiping Han,
  • Ping Wang,
  • Nan Cui,
  • Tingjun Lao,
  • Peiqin Hong

Journal volume & issue
Vol. 22, no. 2
pp. 155 – 164

Abstract

Read online

A new concept of critical point is expounded by analysing the potentiometric titration curves of aluminium salt solutions under the moderate slow rate of base injection. The critical point is defined as the characteristic spot of the Al3+ salt solutions potentiometric titration curve, which is related to the experiment conditions. In addition, the changes of critical points reflect the influence of experiment conditions on the course of the hydrolysis-polymerization and the conversion of hydroxyl polynuclear aluminum species. According to the OH/Al mole ratio, the Al species can be divided into four regions quantitatively by three characteristic points on the titration curves: Part I, Al3+/Ala region, consist chiefly of Al3+ and mononuclear Al; Part II, the small/middle polynuclear Al region, including Al2-Al12; Part III, the large-size polynuclear aluminum region, consistent with predominantly Al13-Al54 and a little sol/gel Al(OH)3; Part IV, the dissolving region of sol/gel Alc, only Al(OH) 3 (aq or am) and Al(OH)4- species, which set up a base to study on the hydrolysis-polymerization of Al3+. At the same time, significant effects of total aluminum concentration, temperature, halide ion, silicate radical, and organic acid radical on the titration curves and its critical points were observed. Given the three critical points which demarcating the aluminum forms, we carry out a through investigation into the fundamental regulations of these factors’ influence, and offer a fresh train of thought to study the hydrolysis-polymerization of Al3+ in soil solutions.

Keywords