Micromachines (May 2021)

Room Temperature Direct Electron Beam Lithography in a Condensed Copper Carboxylate

  • Luisa Berger,
  • Jakub Jurczyk,
  • Katarzyna Madajska,
  • Iwona B. Szymańska,
  • Patrik Hoffmann,
  • Ivo Utke

DOI
https://doi.org/10.3390/mi12050580
Journal volume & issue
Vol. 12, no. 5
p. 580

Abstract

Read online

High-resolution metallic nanostructures can be fabricated with multistep processes, such as electron beam lithography or ice lithography. The gas-assisted direct-write technique known as focused electron beam induced deposition (FEBID) is more versatile than the other candidates. However, it suffers from low throughput. This work presents the combined approach of FEBID and the above-mentioned lithography techniques: direct electron beam lithography (D-EBL). A low-volatility copper precursor is locally condensed onto a room temperature substrate and acts as a positive tone resist. A focused electron beam then directly irradiates the desired patterns, leading to local molecule dissociation. By rinsing or sublimation, the non-irradiated precursor is removed, leaving copper-containing structures. Deposits were formed with drastically enhanced growth rates than FEBID, and their composition was found to be comparable to gas-assisted FEBID structures. The influence of electron scattering within the substrate as well as implementing a post-purification protocol were studied. The latter led to the agglomeration of high-purity copper crystals. We present this as a new approach to electron beam-induced fabrication of metallic nanostructures without the need for cryogenic or hot substrates. D-EBL promises fast and easy fabrication results.

Keywords