AI (Feb 2022)

Hydropower Operation Optimization Using Machine Learning: A Systematic Review

  • Jose Bernardes,
  • Mateus Santos,
  • Thiago Abreu,
  • Lenio Prado,
  • Dannilo Miranda,
  • Ricardo Julio,
  • Pedro Viana,
  • Marcelo Fonseca,
  • Edson Bortoni,
  • Guilherme Sousa Bastos

DOI
https://doi.org/10.3390/ai3010006
Journal volume & issue
Vol. 3, no. 1
pp. 78 – 99

Abstract

Read online

The optimal dispatch of hydropower plants consists of the challenge of taking advantage of both available head and river flows. Despite the objective of delivering the maximum power to the grid, some variables are uncertain, dynamic, non-linear, and non-parametric. Nevertheless, some models may help hydropower generating players with computer science evolution, thus maximizing the hydropower plants’ power production. Over the years, several studies have explored Machine Learning (ML) techniques to optimize hydropower plants’ dispatch, being applied in the pre-operation, real-time and post-operation phases. Hence, this work consists of a systematic review to analyze how ML models are being used to optimize energy production from hydropower plants. The analysis focused on criteria that interfere with energy generation forecasts, operating policies, and performance evaluation. Our discussions aimed at ML techniques, schedule forecasts, river systems, and ML applications for hydropower optimization. The results showed that ML techniques have been more applied for river flow forecast and reservoir operation optimization. The long-term scheduling horizon is the most common application in the analyzed studies. Therefore, supervised learning was more applied as ML technique segment. Despite being a widely explored theme, new areas present opportunities for disruptive research, such as real-time schedule forecast, run-of-river system optimization and low-head hydropower plant operation.

Keywords