Mathematics (Mar 2020)

On the Use of Probabilistic Worst-Case Execution Time Estimation for Parallel Applications in High Performance Systems

  • Matteo Fusi,
  • Fabio Mazzocchetti,
  • Albert Farres,
  • Leonidas Kosmidis,
  • Ramon Canal,
  • Francisco J. Cazorla,
  • Jaume Abella

DOI
https://doi.org/10.3390/math8030314
Journal volume & issue
Vol. 8, no. 3
p. 314

Abstract

Read online

Some high performance computing (HPC) applications exhibit increasing real-time requirements, which call for effective means to predict their high execution times distribution. This is a new challenge for HPC applications but a well-known problem for real-time embedded applications where solutions already exist, although they target low-performance systems running single-threaded applications. In this paper, we show how some performance validation and measurement-based practices for real-time execution time prediction can be leveraged in the context of HPC applications on high-performance platforms, thus enabling reliable means to obtain real-time guarantees for those applications. In particular, the proposed methodology uses coordinately techniques that randomly explore potential timing behavior of the application together with Extreme Value Theory (EVT) to predict rare (and high) execution times to, eventually, derive probabilistic Worst-Case Execution Time (pWCET) curves. We demonstrate the effectiveness of this approach for an acoustic wave inversion application used for geophysical exploration.

Keywords