Polymers (Aug 2018)

Preparation of CuONPs@PVDF/Non-Woven Polyester Composite Membrane: Structural Influence of Nanoparticle Addition

  • Claudio A. Terraza,
  • Rudy Martin-Trasanco,
  • Cesar Saldías,
  • Marjorie González,
  • Ángel Leiva,
  • Alain Tundidor-Camba

DOI
https://doi.org/10.3390/polym10080862
Journal volume & issue
Vol. 10, no. 8
p. 862

Abstract

Read online

Membrane distillation techniques have appeared as promising options for guaranteeing the availability of potable water in times of scarcity of this essential resource. For membrane preparation, polyvinylidene fluoride (PVDF) is preferred due to the easier synthesis procedures, with respect to other fluorine-based polymers. In this work, copper oxide nanoparticles (CuONPs) of different weight percent (wt %) embedded in PVDF membranes supported on non-woven polyester fabric (NWPET) were prepared by the phase inversion method, and characterized by spectroscopy (ATR-FTIR, Raman) and electron microscopy techniques (SEM). The PVDF deposited onto the NWPET was mostly composed of its polar β-phase (F(β) = 53%), which was determined from the ATR-FTIR spectrum. The F(β) value remained constant throughout the whole range of added CuONP concentrations (2–10 wt %), as was determined from the ATR-FTIR spectrum. The absence of signals corresponding to CuONPs in the ATR-FTIR spectra and the appearance of peaks at 297, 360, and 630 cm−1 in the Raman spectra of the membranes suggest that the CuONPs are preferably located in the inner PVDF membrane, but not on its surface. The membrane morphologies were characterized by SEM. From the obtained SEM micrographs, a decrease and increase in the amount of micropores and nanopores, respectively, near the surface and intercalated in the finger-like layer were observed. As a result of the CuONP addition, the nanopores in the sponge-like layer decreased in size. The values of water contact angle (WCA) measurements showed a decreasing trend, from 94° to 80°, upon the addition of CuONPs (2–10 wt %), indicating a diminishment in the hydrophobicity degree of the membranes. Apparently, the increase in the amount of nanopores near the surface decreased the membrane roughness, so it became less hydrophobic.

Keywords