Journal of Dairy Science (Oct 2024)
Dietary supplementation of rumen native microbes improves lactation performance and feed efficiency in dairy cows
Abstract
ABSTRACT: The objectives of this study were to determine the effects of 2 dietary microbial additives on productive performance and feed efficiency when supplemented to diets of Holstein cows. One hundred seventeen Holstein cows were enrolled at 61 d (31–87 d) postpartum in a randomized complete block design experiment. Cows were blocked by parity group, as nulliparous or multiparous cows and, within parity, by pretreatment ECM yield. Within block, cows were randomly assigned to one of 3 treatments administered as top-dress for 140 d. Treatments consisted of either 100 g of corn meal containing no microbial additive (CON; 15 primiparous and 25 multiparous), 100 g of corn meal containing 5 g of a mixture of Clostridium beijerinckii and Pichia kudriavzevii (G1; 4 × 107 cfu of C. beijerinckii and 1 × 109 cfu of P. kudriavzevii; 14 primiparous and 24 multiparous), or 100 g of corn meal containing 5 g of a mixture of C. beijerinckii, P. kudriavzevii, Butyrivibrio fibrisolvens, and Ruminococcus bovis (G2; 4 × 107 cfu of C. beijerinckii, 1 × 109 cfu of P. kudriavzevii, 1 × 108 cfu of B. fibrisolvens, and 1 × 108 cfu of R. bovis; 15 primiparous and 24 multiparous). Intake of DM, milk yield, and BW were measured daily, whereas milk composition was analyzed at each milking 2 d a week, and body condition was scored twice weekly. Milk samples were collected on d 60 and 62 in the experiment and analyzed for individual fatty acids. The data were analyzed with mixed-effects models with orthogonal contrast to determine the effect of microbial additive (MA; CON vs. 1/2 G1 + 1/2 G2) and type of microbial additive (TMA; G1 vs. G2). Results are described in sequence as CON, G1, and G2. Intake of DM (22.2 vs. 22.4 vs. 22.4 kg/d), BW (685 vs. 685 vs. 685 kg) and the daily BW change (0.40 vs. 0.39 vs. 0.39 kg/d) did not differ among treatments; however, feeding MA tended to increase BCS (3.28 vs. 3.33 vs. 3.36). Supplementing MA increased yields of milk (39.9 vs. 41.3 vs. 41.5 kg/d), ECM (37.9 vs. 39.3 vs. 39.9 kg/d), fat (1.31 vs. 1.37 vs. 1.40 kg/d), TS (4.59 vs. 4.75 vs. 4.79 kg/d), and ECM per kg of DMI (1.72 vs. 1.76 vs. 1.80 kg/kg). Furthermore, cows fed MA increased yields of preformed fatty acids in milk fat (>16C; 435 vs. 463 vs. 488 g/d), particularly UFA (367 vs. 387 vs. 410 g/d), such as linoleic (C18:2 cis-9,cis-12; 30.9 vs. 33.5 vs. 35.4 g/d) and α-linolenic acids (C18:3 cis-9,cis-12,cis-15; 2.46 vs. 2.68 vs. 2.82 g/d) on d 60 and 62 in the experiment. Collectively, supplementing G1 and G2 improved productive performance of cows with no differences between the 2 MA.