Water (May 2019)

Distributive Characteristics of Riverine Nutrients in the Mun River, Northeast Thailand: Implications for Anthropogenic Inputs

  • Jinke Liu,
  • Guilin Han,
  • Xiaolong Liu,
  • Man Liu,
  • Chao Song,
  • Kunhua Yang,
  • Xiaoqiang Li,
  • Qian Zhang

DOI
https://doi.org/10.3390/w11050954
Journal volume & issue
Vol. 11, no. 5
p. 954

Abstract

Read online

The nutrient contents of Mun River water in northeast Thailand during the dry season were measured to investigate the effect of human activities on dissolved load species. Dissolved organic carbon (DOC) values varied from 2.5 to 17.1 mg/L, averaging 9.0 mg/L; dissolved inorganic nitrogen (DIN) ranged between 0.12 and 0.11 mg/L; Cl− values ranged from 1.7 to 668.6 mg/L, with an average value of 84.8 mg/L; dissolved silicon (DSi) varied from 1.7 to 9.9 mg/L; and SO42− values averaged 8.9 mg/L. DOC, Cl−, and SO42− contents decreased with the flow direction. The high concentrations of DOC, K+, Cl−, and SO42− in the upper reaches were closely related to anthropogenic inputs, specifically industrial sewage. The covariation demonstrated that these dissolved loads may have the same sources. In other regions, Cl− contents were derived from weathering products. DIN contents maintained the same level on the river, and few sampling sites with high concentrations of DIN were influenced by point source pollution. The extremely low P concentrations limited algal growth, and the DSi showed no clear relationship with N and K, indicating that DSi in the Mun River was controlled by the weathering input rather than biological effects. The exact reverse spatial distributions of DOC between the wet and dry seasons (which increased with the flow direction in the wet season) were due to different precipitation rates, and the rare rainfall in the dry season had difficulty flushing the soil and transporting soil organic matter into the rivers. The local government should control sewage discharge and optimize farming methods.

Keywords