EPJ Web of Conferences (Jan 2021)

IMPLEMENTATION OF AN AUTONOMOUS REACTIVITY CONTROL SYSTEM IN A SMALL LEAD-COOLED FAST REACTOR

  • Dehlin Fredrik,
  • Acharya Govatsa,
  • Bortot Sara,
  • Mickus Ignas

DOI
https://doi.org/10.1051/epjconf/202124707006
Journal volume & issue
Vol. 247
p. 07006

Abstract

Read online

This paper describes the design, implementation and characterisation of an Autonomous Reactivity Control (ARC) system in a small modular lead-cooled fast reactor. The aim of this work was to demonstrate the applicability of the ARC system and to study its dynamic behaviour during an anticipated transient without scram. A simplified one-dimensional model was developed to calculate the heat transfer within the ARC system, and the reactivity worth as a function of the neutron poison’s insertion into the active core was obtained via static neutronic calculations. By coupling the aforementioned models, the ARC’s time-dependent reactivity was derived as a function of the coolant outlet temperature variation. This model was implemented into the BELLA multi-point dynamics code and transient simulations were run. A control rod ejection accident was studied leading to an unprotected transient overpower scenario, in which 350 pcm reactivity was inserted during one second. It was shown that the ARC system provides a forceful negative reactivity feedback and that steady-state temperatures after the transient were reduced by almost 300 K compared to an identical transient without its action. In this scenario, the ARC system managed to stabilise the coolant outlet temperature at a value 100 K above nominal conditions. The implementation of an ARC system provided the reactor with a passively actuated self-regulating reactivity control system able to insert large amounts of negative reactivity in a short amount of time.

Keywords