Genome Biology (Mar 2019)

EmptyDrops: distinguishing cells from empty droplets in droplet-based single-cell RNA sequencing data

  • Aaron T. L. Lun,
  • Samantha Riesenfeld,
  • Tallulah Andrews,
  • The Phuong Dao,
  • Tomas Gomes,
  • participants in the 1st Human Cell Atlas Jamboree,
  • John C. Marioni

DOI
https://doi.org/10.1186/s13059-019-1662-y
Journal volume & issue
Vol. 20, no. 1
pp. 1 – 9

Abstract

Read online

Abstract Droplet-based single-cell RNA sequencing protocols have dramatically increased the throughput of single-cell transcriptomics studies. A key computational challenge when processing these data is to distinguish libraries for real cells from empty droplets. Here, we describe a new statistical method for calling cells from droplet-based data, based on detecting significant deviations from the expression profile of the ambient solution. Using simulations, we demonstrate that EmptyDrops has greater power than existing approaches while controlling the false discovery rate among detected cells. Our method also retains distinct cell types that would have been discarded by existing methods in several real data sets.

Keywords