Egyptian Journal of Medical Human Genetics (Oct 2021)
Automated detection of colon cancer using genomic signal processing
Abstract
Abstract Background Disorders in deoxyribonucleic acid (DNA) mutations are the common cause of colon cancer. Detection of these mutations is the first step in colon cancer diagnosis. Differentiation among normal and cancerous colon gene sequences is a method used for mutation identification. Early detection of this type of disease can avoid complications that can lead to death. In this study, 55 healthy and 55 cancerous genes for colon cells obtained from the national center for biotechnology information GenBank are used. After applying the electron–ion interaction pseudopotential (EIIP) numbering representation method for the sequences, single-level discrete wavelet transform (DWT) is applied using Haar wavelet. Then, some statistical features are obtained from the wavelet domain. These features are mean, variance, standard deviation, autocorrelation, entropy, skewness, and kurtosis. The resulting values are applied to the k-nearest neighbor (KNN) and support vector machine (SVM) algorithms to obtain satisfactory classification results. Results Four important parameters are calculated to evaluate the performance of the classifiers. Accuracy (ACC), F1 score, and Matthews correlation coefficient (MCC) are 95%, 94.74%, and 0.9045%, respectively, for SVM and 97.5%, 97.44%, and 0.9512%, respectively, for KNN. Conclusion This study has created a novel successful system for colorectal cancer classification and detection with the well-satisfied results. The K-nearest network results are the best with low error for the generated classification system, even though the results of the SVM network are acceptable.
Keywords