Systems Science & Control Engineering (Dec 2022)

Covid-19 diagnosis by WE-SAJ

  • Wei Wang,
  • Xin Zhang,
  • Shui-Hua Wang,
  • Yu-Dong Zhang

DOI
https://doi.org/10.1080/21642583.2022.2045645
Journal volume & issue
Vol. 10, no. 1
pp. 325 – 335

Abstract

Read online

With a global COVID-19 pandemic, the number of confirmed patients increases rapidly, leaving the world with very few medical resources. Therefore, the fast diagnosis and monitoring of COVID-19 are one of the world's most critical challenges today. Artificial intelligence-based CT image classification models can quickly and accurately distinguish infected patients from healthy populations. Our research proposes a deep learning model (WE-SAJ) using wavelet entropy for feature extraction, two-layer FNNs for classification and the adaptive Jaya algorithm as a training algorithm. It achieves superior performance compared to the Jaya-based model. The model has a sensitivity of 85.47±1.84, specificity of 87.23±1.67 precision of 87.03±1.34, an accuracy of 86.35±0.70, and F1 score of 86.23±0.77, Matthews correlation coefficient of 72.75±1.38, and feature mutual information of 86.24±0.76. Our experiments demonstrate the potential of artificial intelligence techniques for COVID-19 diagnosis and the effectiveness of the Self-adaptive Jaya algorithm compared to the Jaya algorithm for medical image classification tasks.

Keywords