Universe (Sep 2022)

Single- and Double-Charge Exchange Reactions and Nuclear Matrix Element for Double-Beta Decay

  • Hiroyasu Ejiri

DOI
https://doi.org/10.3390/universe8090457
Journal volume & issue
Vol. 8, no. 9
p. 457

Abstract

Read online

Neutrino properties such as the Majorana nature and the masses, which go beyond the standard model, are derived from the experimental double-beta decay (DBD) rate by using the DBD nuclear matrix element (NME). Theoretical evaluations for the NME, however, are very difficult. Single-charge exchange reactions (SCERs) and double-charge exchange reactions (DCERs) are used to study nuclear isospin (τ) and spin (σ) correlations involved in the DBD NME and to theoretically calculate the DBD NME. Single and double τσ NMEs for quasi-particle states are studied by SCERs and DCER. They are found to be reduced with respect to the quasi-particle model NMEs due to the τσ correlations. The impact of the SCER- and DCER-NMEs on the DBD NME is discussed.

Keywords