Journal of Clinical Medicine (Feb 2023)

Comparative Study of Muscle Hardness during Water-Walking and Land-Walking Using Ultrasound Real-Time Tissue Elastography in Healthy Young People

  • Naoya Tanabe,
  • Yasuko Nishioka,
  • Kyosuke Imashiro,
  • Hiromi Hashimoto,
  • Hiroki Kimura,
  • Yasuhiro Taniguchi,
  • Koya Nakai,
  • Yasunori Umemoto,
  • Ken Kouda,
  • Fumihiro Tajima,
  • Yasuo Mikami

DOI
https://doi.org/10.3390/jcm12041660
Journal volume & issue
Vol. 12, no. 4
p. 1660

Abstract

Read online

Compared with land-walking, water-walking is considered to be beneficial as a whole-body exercise because of the characteristics of water (buoyancy, viscosity, hydrostatic pressure, and water temperature). However, there are few reports on the effects of exercise in water on muscles, and there is no standard qualitative assessment method for muscle flexibility. Therefore, we used ultrasound real-time tissue elastography (RTE) to compare muscle hardness after water-walking and land-walking. Participants were 15 healthy young adult males (24.8 ± 2.3 years). The method consisted of land-walking and water-walking for 20 min on separate days. The strain ratio of the rectus femoris (RF) and medial head of gastrocnemius (MHGM) muscles were measured before and immediately after walking using RTE to evaluate muscle hardness. In water-walking, the strain ratio significantly decreased immediately after water-walking, with p p < 0.05 for MHGM, indicating a significant decrease in muscle hardness after water-walking. On the other hand, land-walking did not produce significant differences in RF and MHGM. Muscle hardness after aerobic exercise, as assessed by RTE, was not changed by land walking but was significantly decreased by water walking. The decrease in muscle hardness induced by water-walking was thought to be caused by the edema reduction effect produced by buoyancy and hydrostatic pressure.

Keywords