PLoS Pathogens (Jun 2018)
Crosstalk between the serine/threonine kinase StkP and the response regulator ComE controls the stress response and intracellular survival of Streptococcus pneumoniae.
Abstract
Streptococcus pneumoniae is an opportunistic human bacterial pathogen that usually colonizes the upper respiratory tract, but the invasion and survival mechanism in respiratory epithelial cells remains elusive. Previously, we described that acidic stress-induced lysis (ASIL) and intracellular survival are controlled by ComE through a yet unknown activation mechanism under acidic conditions, which is independent of the ComD histidine kinase that activates this response regulator for competence development at pH 7.8. Here, we demonstrate that the serine/threonine kinase StkP is essential for ASIL, and show that StkP phosphorylates ComE at Thr128. Molecular dynamic simulations predicted that Thr128-phosphorylation induces conformational changes on ComE's DNA-binding domain. Using nonphosphorylatable (ComET128A) and phosphomimetic (ComET128E) proteins, we confirmed that Thr128-phosphorylation increased the DNA-binding affinity of ComE. The non-phosphorylated form of ComE interacted more strongly with StkP than the phosphomimetic form at acidic pH, suggesting that pH facilitated crosstalk. To identify the ComE-regulated genes under acidic conditions, a comparative transcriptomic analysis was performed between the comET128A and wt strains, and differential expression of 104 genes involved in different cellular processes was detected, suggesting that the StkP/ComE pathway induced global changes in response to acidic stress. In the comET128A mutant, the repression of spxB and sodA correlated with decreased H2O2 production, whereas the reduced expression of murN correlated with an increased resistance to cell wall antibiotic-induced lysis, compatible with cell wall alterations. In the comET128A mutant, ASIL was blocked and acid tolerance response was higher compared to the wt strain. These phenotypes, accompanied with low H2O2 production, are likely responsible for the increased survival in pneumocytes of the comET128A mutant. We propose that the StkP/ComE pathway controls the stress response, thus affecting the intracellular survival of S. pneumoniae in pneumocytes, one of the first barriers that this pathogen must cross to establish an infection.