BMC Genomics (Feb 2024)
Whole-genome resequencing provides insights into the diversity and adaptation to desert environment in Xinjiang Mongolian cattle
Abstract
Background Xinjiang Mongolian cattle is an indigenous breed that inhabits the Taklimakan Desert and is characterized by its small body size. However, the genomic diversity, origin, and genetic basis underlying the adaptation to the desert environment have been poorly studied. Results We analyzed patterns of Xinjiang Mongolian cattle genetic variation by sequencing 20 genomes together with seven previously sequenced genomes and comparing them to the 134 genomes of nine representative breeds worldwide. Among the breeds of Bos taurus, we found the highest nucleotide diversity (0.0024) associated with the lower inbreeding coefficient (2.0110-6), the lowest linkage disequilibrium (r2 = 0.3889 at distance of 10 kb), and the highest effective population size (181 at 20 generations ago) in Xinjiang Mongolian cattle. The genomic diversity pattern could be explained by a limited introgression of Bos indicus genes. More importantly, similarly to desert-adapted camel and same-habitat sheep, we also identified signatures of selection including genes, GO terms, and/or KEGG pathways controlling water reabsorption and osmoregulation, metabolic regulation and energy balance, as well as small body size in Xinjiang Mongolian cattle. Conclusions Our results imply that Xinjiang Mongolian cattle might have acquired distinct genomic diversity by virtue of the introgression of Bos indicus, which helps understand the demographic history. The identification of selection signatures can provide novel insights into the genomic basis underlying the adaptation of Xinjiang Mongolian cattle to the desert environment.