Applied Sciences (Oct 2021)
User-Centered Design and Evaluation of an Upper Limb Rehabilitation System with a Virtual Environment
Abstract
Virtual environments (VEs) and haptic devices increase patients’ motivation. Furthermore, they observe their performance during rehabilitation. However, some of these technologies present disadvantages because they do not consider therapists’ needs and experience. This research presents the development and usability evaluation of an upper limb rehabilitation system based on a user-centered design approach for patients with moderate or mild stroke that can perform active rehabilitation. The system consists of a virtual environment with four virtual scenarios and a developed haptic device with vibrotactile feedback, and it can be visualized using a monitor or a Head-Mounted Display (HMD). Two evaluations were carried out; in the first one, five therapists evaluated the system’s usability using a monitor through the System Usability Scale, the user experience with the AttrakDiff questionnaire, and the functionality with customized items. As a result of these tests, improvements were made to the system. The second evaluation was carried out by ten volunteers who evaluated the usability, user experience, and performance with a monitor and HMD. A comparison of the therapist and volunteer scores has shown an increase in the usability evaluation (from 78 to >85), the hedonic score rose from 0.6 to 2.23, the pragmatic qualities from 1.25 to 2.20, and the attractiveness from 1.3 to 2.95. Additionally, the haptic device and the VE showed no relevant difference between their performance when using a monitor or HMD. The results show that the proposed system has the characteristics to be a helpful tool for therapists and upper limb rehabilitation.
Keywords