AMB Express (Jun 2021)

A GH89 human α-N-acetylglucosaminidase (hNAGLU) homologue from gut microbe Bacteroides thetaiotaomicron capable of hydrolyzing heparosan oligosaccharides

  • Xiaohong Yang,
  • Xiaoxiao Yang,
  • Hai Yu,
  • Lan Na,
  • Tamashree Ghosh,
  • John B. McArthur,
  • Tsui-Fen Chou,
  • Patricia Dickson,
  • Xi Chen

DOI
https://doi.org/10.1186/s13568-021-01253-1
Journal volume & issue
Vol. 11, no. 1
pp. 1 – 12

Abstract

Read online

Abstract Carbohydrate-Active enZYme (CAZY) GH89 family enzymes catalyze the cleavage of terminal α-N-acetylglucosamine from glycans and glycoconjugates. Although structurally and mechanistically similar to the human lysosomal α-N-acetylglucosaminidase (hNAGLU) in GH89 which is involved in the degradation of heparan sulfate in the lysosome, the reported bacterial GH89 enzymes characterized so far have no or low activity toward α-N-acetylglucosamine-terminated heparosan oligosaccharides, the preferred substrates of hNAGLU. We cloned and expressed several soluble and active recombinant bacterial GH89 enzymes in Escherichia coli. Among these enzymes, a truncated recombinant α-N-acetylglucosaminidase from gut symbiotic bacterium Bacteroides thetaiotaomicron ∆22Bt3590 was found to catalyze the cleavage of the terminal α1–4-linked N-acetylglucosamine (GlcNAc) from a heparosan disaccharide with high efficiency. Heparosan oligosaccharides with lengths up to decasaccharide were also suitable substrates. This bacterial α-N-acetylglucosaminidase could be a useful catalyst for heparan sulfate analysis.

Keywords