Diagnostic and Interventional Radiology (May 2022)

Tc-99m-tamoxifen: A novel diagnostic imaging agent for estrogen receptor-expressing breast cancer patients

  • Anupriya Chhabra,
  • Uma Sharma,
  • Rajender Kumar,
  • Ishita Laroiya,
  • Alka Bhatia,
  • Vijayta Chadha,
  • Rakhee Vatsa,
  • Deepti Upadhyay,
  • Komalpreet Kaur,
  • Amanjit Bal,
  • Gurpreet Singh,
  • Bhagwant Rai Mittal,
  • Jaya Shukla

DOI
https://doi.org/10.5152/dir.2022.201051
Journal volume & issue
Vol. 28, no. 3
pp. 275 – 284

Abstract

Read online

PURPOSEThe aim of the study was to radiolabel, characterize, and perform in vitro and in vivo assessment of Technetium-99m (Tc-99m) tamoxifen for screening ER expressing lesions in breast cancer patients.METHODSIn this study, tamoxifen has been radiolabeled with Tc-99m via Tc-99m-tricarbonyl core. The characterization and quality control tests of Tc-99m-tamoxifen were performed. In vitro recep- tor binding and blocking studies were performed in both positive control (MCF-7) and negative control cell lines (MDA-MB-231). Normal biodistribution studies were performed in female Wistar albino rats. The pilot clinical studies were performed in 4 ER-expressing breast cancer patients. Of the 4 patients, 1 was on tamoxifen therapy. All 4 patients had also undergone Fluorine-18 fluorodeoxyglucose (F-18-FDG) positron emission tomography/computed tomography.RESULTSTamoxifen was radiolabeled with Tc-99m via Tc-99m-tricarbonyl core with more than 95% radio- chemical yield. Mass spectra showed a peak corresponding to the molecular weight of Tc-99m- tricarbonyl and Tc-99m-tamoxifen. The site of binding of Tc-99m-tricarbonyl with tamoxifen was determined by proton nuclear magnetic resonance. The Tc-99m-tamoxifen showed 30% binding with MCF-7 and only 1%-2% receptor binding with MDA-MB-231 cell lines. Also, the percentage of receptor binding was drastically reduced (up to 72%) when ER was saturated with 50 times the excess molar ratio of unlabeled tamoxifen. In a pilot patient study, Tc-99m-tamoxifen uptake was observed in primary and metastatic lesions. However, no uptake was observed in a patient who was on tamoxifen therapy. The uptake of F-18-FDG was noted in all the patients.CONCLUSIONTamoxifen was radiolabeled with an in-house-synthesized Tc-99m-tricarbonyl core. The radio- labeled complex has been characterized and evaluated for receptor specificity in in vitro and in vivo studies. Also, this is the first clinical study using Tc-99m-tamoxifen for imaging ER. More patients need to be evaluated to further explore the role of Tc-99m-tamoxifen in ER-expressing lesions.