Remote Sensing (Aug 2024)

Machine Learning-Based Remote Sensing Inversion of Non-Photosynthetic/Photosynthetic Vegetation Coverage in Desertified Areas and Its Response to Drought Analysis

  • Zichen Guo,
  • Shulin Liu,
  • Kun Feng,
  • Wenping Kang,
  • Xiang Chen

DOI
https://doi.org/10.3390/rs16173226
Journal volume & issue
Vol. 16, no. 17
p. 3226

Abstract

Read online

Determining the responses of non-photosynthetic vegetation (NPV) and photosynthetic vegetation (PV) communities to climate change is crucial in illustrating the sensitivity and sustainability of these ecosystems. In this study, we evaluated the accuracy of inverting NPV and PV using Landsat imagery with random forest (RF), backpropagation neural network (BPNN), and fully connected neural network (FCNN) models. Additionally, we inverted MODIS NPV and PV time-series data using spectral unmixing. Based on this, we analyzed the responses of NPV and PV to precipitation and drought across different ecological regions. The main conclusions are as follows: (1) In NPV remote sensing inversion, the softmax activation function demonstrates greater advantages over the ReLU activation function. Specifically, the use of the softmax function results in an approximate increase of 0.35 in the R2 value. (2) Compared with a five-layer FCNN with 128 neurons and a three-layer BPNN with 12 neurons, a random forest model with over 50 trees and 5 leaf nodes provides better inversion results for NPV and PV (R2_RF-NPV = 0.843, R2_RF-PV = 0.861). (3) Long-term drought or heavy rainfall events can affect the utilization of precipitation by NPV and PV. There is a high correlation between extreme precipitation events following prolonged drought and an increase in PV coverage. (4) Under long-term drought conditions, the vegetation in the study area responded to precipitation during the last winter and growing season. This study provides an illustration of the response of semi-arid ecosystems to drought and wetting events, thereby offering a data basis for the effect evaluation of afforestation projects.

Keywords