شیمی کاربردی روز (Jun 2020)

Synthesis of GQD@ZIF-8 nano hybrids and its application as a lead optical sensor

  • Sohylaa Azadi,
  • Rouholah Zare-Dorabei,
  • Fatemeh Hamidi,
  • Vahid Safarifard

DOI
https://doi.org/10.22075/chem.2019.18395.1690
Journal volume & issue
Vol. 15, no. 55
pp. 327 – 342

Abstract

Read online

The present study is aimed to investigate ZIF-8 metal organic frameworks, graphene quantum Dots, and their hybrid materials (GQD@ZIF-8) in the terms of sensing heavy metals. Brilliant property of graphene quantum Dots in fluorescence emission with a high intensity and ZIF-8 with high porosity and specific surface area (as adsorbent) were great stimulants to fabricate the aforementioned sensing system. The prepared hybrid material was successfully employed for the measurement of heavy metals such as lead in aqueous samples. The concentration of lead in various samples was measured using GQD@ZIF-8 hybrid materials via the method of single parameter during the time. In order to characterize GQD@ZIF-8 hybrid materials, Scanning Electron Microscopy (SEM), Furrier Transform Infrared spectroscopy (FT-IR), and nitrogen adsorption/ desorption (BET and BJH analysis) were employed in present study. Different parameters such as time, pH, and the concentration of adsorbent were also optimized in present study. The optimized values for concentration of adsorbent, time, and pH were found to be 0.05 mg/ml, 5 min, and 5 respectively. Importantly, limit of detection (LOD) for lead was calculated as 0.86 ppm. Low amount of LOD can be attributed to high fluorescence intensity and great specific surface area of the proposed sensor. The obtained results for LOD were compared with the other existing methods for detection of lead, presented in literature. The obtained results demonstrates that the proposed hybrid material possess high potential for detection and removal of lead from real samples.

Keywords