AgriEngineering (Jul 2021)

Growth of Basil (<i>Ocimum basilicum</i>) in Aeroponics, DRF, and Raft Systems with Effluents of African Catfish (<i>Clarias gariepinus</i>) in Decoupled Aquaponics (s.s.)

  • Johannes Pasch,
  • Samuel Appelbaum,
  • Harry Wilhelm Palm,
  • Ulrich Knaus

DOI
https://doi.org/10.3390/agriengineering3030036
Journal volume & issue
Vol. 3, no. 3
pp. 559 – 574

Abstract

Read online

Basil (Ocimum basilicum) was cultivated in three hydroponic subsystems (i) a modified commercial aeroponics, (ii) a dynamic root floating (DRF) system, and (iii) a floating raft system in a decoupled aquaponic system in Northern Germany, Mecklenburg–Western Pomerania. For plant nutrition, aquaculture process water from intensive rearing of African catfish (Clarias gariepinus) was used without fertilizer. After 39 days, 16 plant growth parameters were compared, with aeroponics performing significantly better in 11 parameters compared with the DRF, and better compared with the raft in 13 parameters. The economically important leaf wet and dry weight was over 40% higher in aeroponics (28.53 ± 8.74 g; 4.26 ± 1.23 g), but similar in the DRF (20.19 ± 6.57 g; 2.83 ± 0.90 g) and raft (20.35 ± 7.14 g; 2.84 ± 1.04 g). The roots in the DRF grew shorter and thicker; however, this resulted in a higher root dry weight in aeroponics (1.08 ± 0.38 g) compared with the DRF (0.82 ± 0.36 g) and raft (0.67 ± 0.27 g). With optimal fertilizer and system improvement, aquaponic aeroponics (s.s.) could become a productive and sustainable large-scale food production system in the future. Due to its simple construction, the raft is ideal for domestic or semi-commercial use and can be used in areas where water is neither scarce nor expensive. The DRF system is particularly suitable for basil cultivation under hot tropical conditions.

Keywords