Materials (Apr 2015)

Tuning the Pore Geometry of Ordered Mesoporous Carbons for Enhanced Adsorption of Bisphenol-A

  • Wannes Libbrecht,
  • Koen Vandaele,
  • Klaartje De Buysser,
  • An Verberckmoes,
  • Joris W. Thybaut,
  • Hilde Poelman,
  • Jeriffa De Clercq,
  • Pascal Van Der Voort

DOI
https://doi.org/10.3390/ma8041652
Journal volume & issue
Vol. 8, no. 4
pp. 1652 – 1665

Abstract

Read online

Mesoporous carbons were synthesized via both soft and hard template methods and compared to a commercial powder activated carbon (PAC) for the adsorption ability of bisphenol-A (BPA) from an aqueous solution. The commercial PAC had a BET-surface of 1027 m2/g with fine pores of 3 nm and less. The hard templated carbon (CMK-3) material had an even higher BET-surface of 1420 m2/g with an average pore size of 4 nm. The soft templated carbon (SMC) reached a BET-surface of 476 m2/g and a pore size of 7 nm. The maximum observed adsorption capacity (qmax) of CMK-3 was the highest with 474 mg/g, compared to 290 mg/g for PAC and 154 mg/g for SMC. The difference in adsorption capacities was attributed to the specific surface area and hydrophobicity of the adsorbent. The microporous PAC showed the slowest adsorption, while the ordered mesopores of SMC and CMK-3 enhanced the BPA diffusion into the adsorbent. This difference in adsorption kinetics is caused by the increase in pore diameter. However, CMK-3 with an open geometry consisting of interlinked nanorods allows for even faster intraparticle diffusion.

Keywords