JMIR Diabetes (Oct 2023)

An Evidence-Based Framework for Creating Inclusive and Personalized mHealth Solutions—Designing a Solution for Medicaid-Eligible Pregnant Individuals With Uncontrolled Type 2 Diabetes

  • Naleef Fareed,
  • Christine Swoboda,
  • Yiting Wang,
  • Robert Strouse,
  • Jenelle Hoseus,
  • Carrie Baker,
  • Joshua J Joseph,
  • Kartik Venkatesh

DOI
https://doi.org/10.2196/46654
Journal volume & issue
Vol. 8
p. e46654

Abstract

Read online

Mobile health (mHealth) apps can be an evidence-based approach to improve health behavior and outcomes. Prior literature has highlighted the need for more research on mHealth personalization, including in diabetes and pregnancy. Critical gaps exist on the impact of personalization of mHealth apps on patient engagement, and in turn, health behaviors and outcomes. Evidence regarding how personalization, engagement, and health outcomes could be aligned when designing mHealth for underserved populations is much needed, given the historical oversights with mHealth design in these populations. This viewpoint is motivated by our experience from designing a personalized mHealth solution focused on Medicaid-enrolled pregnant individuals with uncontrolled type 2 diabetes, many of whom also experience a high burden of social needs. We describe fundamental components of designing mHealth solutions that are both inclusive and personalized, forming the basis of an evidence-based framework for future mHealth design in other disease states with similar contexts.