Frontiers in Marine Science (Oct 2020)

Contrasting Futures for Australia’s Fisheries Stocks Under IPCC RCP8.5 Emissions – A Multi-Ecosystem Model Approach

  • Heidi R. Pethybridge,
  • Elizabeth A. Fulton,
  • Elizabeth A. Fulton,
  • Alistair J. Hobday,
  • Alistair J. Hobday,
  • Julia Blanchard,
  • Julia Blanchard,
  • Catherine M. Bulman,
  • Ian R. Butler,
  • Ian R. Butler,
  • Ian R. Butler,
  • William W. L. Cheung,
  • Leo X. C. Dutra,
  • Leo X. C. Dutra,
  • Rebecca Gorton,
  • Trevor Hutton,
  • Richard Matear,
  • Hector Lozano-Montes,
  • Eva E. Plagányi,
  • Eva E. Plagányi,
  • Cecilia Villanueva,
  • Cecilia Villanueva,
  • Xuebin Zhang

DOI
https://doi.org/10.3389/fmars.2020.577964
Journal volume & issue
Vol. 7

Abstract

Read online

Climate-driven trends in ocean temperature and primary productivity are projected to differ greatly across the globe, triggering variable levels of concern for marine biota and ecosystems. Quantifying these changes, and the complex ways in which resource-dependent communities will need to respond, is inherently difficult. Existing uncertainty about the structure, function and responses of marine ecosystems, means that a multi-model or ensemble model approach is the most prudent means of assessing the potential ecosystem responses to climate change. In this study, climate-ecological projections of 13 marine ecosystem models for regions around Australia were evaluated. Model types included dynamic food web, spatial whole of ecosystem, intermediate complexity, species distribution, and size spectrum models and were all forced by high-resolution ocean model data. Each Australian region and fishery will face its own challenges in terms of ecosystem shifts and fisheries management responses over the next 30 years. Across regions, demersal systems appear to be more strongly affected by climate change than pelagic systems, with invertebrate species in shallow waters likely to respond first and to a larger degree. With the assistance of qualitative confidence evaluations, the multi-model approach was useful for identifying the likely state of concern for each functional group and thus adaptive management and research priorities. Largest model discrepancies were found between the regional ecosystem models that represent trophic interactions and the species distribution models, with implications for future assessments and adaption planning. Study results highlight that fisheries and their management will need to foster pro-active and flexible adaptation options to make the most of coming opportunities and to minimize risks or negative outcomes.

Keywords