Electronic Research Archive (Jul 2024)
Enhanced spectral attention and adaptive spatial learning guided network for hyperspectral and LiDAR classification
Abstract
Although the data fusion of hyperspectral images (HSI) and light detection and ranging (LiDAR) has provided significant gains for land-cover classification, it also brings technical obstacles (i.e., it is difficult to capture discriminative local and global spatial-spectral from redundant data and build interactions between heterogeneous data). In this paper, a classification network named enhanced spectral attention and adaptive spatial learning guided network (ESASNet) is proposed for the joint use of HSI and LiDAR. Specifically, first, by combining a convolutional neural network (CNN) with the transformer, adaptive spatial learning (ASL) and enhanced spectral learning (ESL) are proposed to learn the spectral-spatial features from the HSI data and the elevation features from the LiDAR data in the local and global receptive field. Second, considering the characteristics of HSI with a continuous, narrowband spectrum, ESL is designed by adding enhanced local self-attention to enhance the mining of the spectral correlations across the adjacent spectrum. Finally, a feature fusion module is proposed to ensure an efficient information exchange between HSI and LiDAR during spectral features and spatial feature fusion. Experimental evaluations on the HSI-LiDAR dataset clearly illustrate that ESASNet performs better in feature extraction than the state-of-the-art methods. The code is available at https://github.com/AirsterMode/ESASNet.
Keywords