BMC Bioinformatics (Mar 2022)

TADreg: a versatile regression framework for TAD identification, differential analysis and rearranged 3D genome prediction

  • Raphaël Mourad

DOI
https://doi.org/10.1186/s12859-022-04614-0
Journal volume & issue
Vol. 23, no. 1
pp. 1 – 14

Abstract

Read online

Abstract Background/Aim In higher eukaryotes, the three-dimensional (3D) organization of the genome is intimately related to numerous key biological functions including gene expression, DNA repair and DNA replication regulations. Alteration of 3D organization, in particular topologically associating domains (TADs), is detrimental to the organism and can give rise to a broad range of diseases such as cancers. Methods Here, we propose a versatile regression framework which not only identifies TADs in a fast and accurate manner, but also detects differential TAD borders across conditions for which few methods exist, and predicts 3D genome reorganization after chromosomal rearrangement. Moreover, the framework is biologically meaningful, has an intuitive interpretation and is easy to visualize. Result and conclusion The novel regression ranks among top TAD callers. Moreover, it identifies new features of the genome we called TAD facilitators, and that are enriched with specific transcription factors. It also unveils the importance of cell-type specific transcription factors in establishing novel TAD borders during neuronal differentiation. Lastly, it compares favorably with the state-of-the-art method for predicting rearranged 3D genome.

Keywords