Atmospheric Chemistry and Physics (Jul 2024)

Monitoring European anthropogenic NO<sub><i>x</i></sub> emissions from space

  • R. J. van der A,
  • J. Ding,
  • H. Eskes

DOI
https://doi.org/10.5194/acp-24-7523-2024
Journal volume & issue
Vol. 24
pp. 7523 – 7534

Abstract

Read online

Since the launch of TROPOMI on the Sentinel-5 Precursor (S5P) satellite, NO2 observations have become available with a resolution of 3.5× 5 km, which makes monitoring NOx emissions possible at the scale of city districts and industrial facilities. For Europe, emissions are reported on an annual basis for country totals and large industrial facilities and made publicly available via the European Environment Agency (EEA). Satellite observations can provide independent and more timely information on NOx emissions. A new version of the inversion algorithm DECSO (Daily Emissions Constrained by Satellite Observations) has been developed for deriving emissions for Europe on a daily basis, averaged to monthly mean maps. The estimated precision of these monthly emissions is about 25 % for individual grid cells. These satellite-derived emissions from DECSO have been compared to the officially reported European emissions and spatial–temporal disaggregated emission inventories. The country total DECSO NOx emissions are close to the reported emissions and the emissions compiled by the Copernicus Atmosphere Monitoring Service (CAMS). Comparison of the spatially distributed NOx emissions of DECSO and CAMS showed that the satellite-derived emissions are often higher in cities, while they are similar for large power plants and slightly lower in rural areas.