Advanced Science (Jul 2022)

Topological Surface‐Dominated Spintronic THz Emission in Topologically Nontrivial Bi1−xSbx Films

  • Hanbum Park,
  • Seungwon Rho,
  • Jonghoon Kim,
  • Hyeongmun Kim,
  • Dajung Kim,
  • Chul Kang,
  • Mann‐Ho Cho

DOI
https://doi.org/10.1002/advs.202200948
Journal volume & issue
Vol. 9, no. 21
pp. n/a – n/a

Abstract

Read online

Abstract Topological materials have significant potential for spintronic applications owing to their superior spin–charge interconversion. Here, the spin‐to‐charge conversion (SCC) characteristics of epitaxial Bi1−xSbx films is investigated across the topological phase transition by spintronic terahertz (THz) spectroscopy. An unexpected, intense spintronic THz emission is observed in the topologically nontrivial semimetal Bi1−xSbx films, significantly greater than that of Pt and Bi2Se3, which indicates the potential of Bi1−xSbx for spintronic applications. More importantly, the topological surface state (TSS) is observed to significantly contribute to SCC, despite the coexistence of the bulk state, which is possible via a unique ultrafast SCC process, considering the decay process of the spin‐polarized hot electrons. This means that topological material‐based spintronic devices should be fabricated in a manner that fully utilizes the TSS, not the bulk state, to maximize their performance. The results not only provide a clue for identifying the source of the giant spin Hall angle of Bi1−xSbx, but also expand the application potential of topological materials by indicating that the optically induced spin current provides a unique method for focused‐spin injection into the TSS.

Keywords